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ABSTRACT —
;2 ;1_5 /0
This report is a discussion of the problem of determining,
through the analysis of radar return signals, the roughness of a
spherical target such as a satellite or a planet. The following steps
are made toward a solution of this problem: The impulse response
of a perturbed sphere is obtained. Statistical relationships of a radar
signal reflected from the sphere are developed. These relationships
are employed to compute the ensemble average and autocorrelation
of the return signal. The computed results obtained are compared
with experimental data. Recommendations for further work to verify
and to exploit the impulse response approach are made. ,Q JTHeR
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1.0 INTRODUCTION

The radar return from lunar and planetary surfaces is of
interest for several reasons. For example, it can help in the deter-
mination of surface characteristics that may influence the establish-
ment of design criteria for landing systems. This study was initiated
to investigate the application of a new mathematical theory of the
reflection of electromagnetic waves. The theory, which is described
in Appendix I, is based on the derivation of the impulse response of a

reflecting surface. = The approach is different from that of W. E.
Brown.

In this study, the thecry is applied to a perturbed spherical
surface to determine the procbability distribution and spatial corre-
lation of the slopes on the surface. Frequency-shift effects are not
considered.

Because of the amount of experimental data available, the
surface of the moon was chosen for this study. The technique might
next be applied tc Venus and to the Earth from abcut 250 kilcmeters.

This study suggests the computation of ensemble averages of
return signals based upon assumptions of the statistics of the surface
characteristics, rather than the computation of a single radar return
signal for a particular orientation cf the reflecting surface. In
Sec. 2.0 of this report the Basore mocdified potential of a perturbed
sphere in terms of surface parameters is derived. The modified
potential is essentially the integral of the impulse response. The
surface parameters used are the radius and angles determined by the
deviation of the outer normal from that of a smooth sphere. Section
3. 0 is devoted to statistical moments of the modified potential as a
function of the statistics of the surface parameters. The moments of
the madified potential are in turn used in Sec. 4. 0 to describe
ensemble averages of radar return signals.

1 Basorg, B. L., The Impulse Response of a Reﬂectin&Surface,
Report No. DTR-4, The Dikewood Corp., 5 January 1962,

2 Brown, W. E., Jr., "A Lunar and Planetary Echo Theory".
Journal of Geophysical Research, Vol. 65, pp 3087-3095.
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The general approach to computing the mean envelope and
the autocorrelation of the envelope of the return signal is given in
Sec. 5.0. Listings of the two computer programs written are given
in Appendix II. Finally, Sec. 6.0 shows some of the computed
results for the moon. The results obtained are compared with
experimental data. This Section also recommends some future work.




2.0 DEVELOPMENT OF THE MODIFIED POTENTIAL FOR A
PERTURBED SPHERE

The impulse response function as derived in Aprendix I is

a '
h(t) = __7\._5_ Er "1—2 Sl kG cot (n, R) ds (1)
(4) R® & = ct

where

C is the integration path and is the set of points at distance R
from the transmitter,

G is the antenna gain in the direction of the increment ds,

k is the voltage reflection coefficient of the surface at each
point on the path,

n, R is the angle between a vector from the transmitter to a
point on the path and the normal to the surface at that
point, and

A is the wavelength of the transmitted signal.

The wavelength enters in the equation from the effective area
of the matched transmitting-receiving antenna, GA“/4wn. For com-
putation, the portion inside the square brackets of Eq. (1) is con-
sidered first. It is denoted B(R) and is called the modified potential
because of its relationship to the vector potential discussed in
Appendix I. The following subsections develop a description of the
different terms that make up B(R) for a rough sphere.

2.1 The Modified Potential

The first problem is to express B(R) in terms of para-
meters suitable for describing a rough surface. The geometry to be
used is shown in Fig. 1. At a point on the contour, the normal can
be described in terms of the direction cosines as illustrated in Fig. 2.
The cosines of a5, @y, and @, are the projections cof the normal on the

on the T 90, ¢0 axes respectively. The normal n is then

- -
@ +cosa_¢ (2)
o 370

—

n= cos « r0+ cos a

1 2 3
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To express n in parameters descriptive of the surface, two other
angles 7 and £ are defined. The angle v is the deviation from the r,
axis of the projection of 71 on the ro, 0o plane. The angle £ is the’
deviation from the ry axis of the projection of the normal on the rg, -

6o plane., These angles may be described in terms of direction cosines
as

COSs o

tan v = 2 (3a)
cos a;
cos a,

tan £ = (3b)
cos a,

From Fig. 1, the R vector from the source to a point on the surface
is in the r , 90 plane and is described by

% - T +sins D
R = R(cosb ro+s1n6 O) (4)

The cot (n, —li) can be derived from the scalar product of _r; and _ﬁ
which gives

- cosécosa1+sin6cosa2

cot (n, R) = (5)

1
{1—(cos dcosa 2

. 2
1+s1n6 cos az) }

Substitution of Eq. (3) into Eq. (5) yields

cos é + sin 6 tan Y

cot (n, R) = (6)

(s1n6 - cos 6 tan y) + tan 13

It is desirable to convert the integration over s to an inte -
gration over the azimuthal angle ¢. The usual relation for polar
coordinates is

ds|2 _
5t

( )+I‘s1n 0

aé (7)
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~—Z _ Transmitter

Fig. 1 - Geometry of Sphere and Source

Fig. 2 - Relationship at a Point
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-To evaluate Eq. (7), consider the equation cf the perturbed sphere
centered on the origin as

G=r—r(¢:e)=0 (8)

The relationships between the gradient of G and the normal yield the
partial derivatives of r as

I'e = "l"’b—ga-é—&-]—-' = -rtan Y (93.)

-rsin Otanég (¢b)

The other relationship needed is that relating R to the intersection,
Thiscanbe written as

F=r2+d2-2rdcose-R2=0 (10)

Jacobians involving F and G give the result

dr/ r¢ ;‘-tané

[ (lla)
3—5 r9+rtan6
r
ae _ ¢ (11b)
dé r6+r'tan6
-6-



Incorporation of Egs. (9) and (11) into Eqg. (7) yields the result

(12)2 _ I_2 sin2 0 (siné -tan ycos 6)2+tan2§
d

(sin 6 ~tanycos <S)2

Finally, the desired result is

cos 6 +sindbtany
sin 6 - tanycos

- d
cot (n, R)-a% = rsinf

and the modified potential is

2m ;

B(R) = 1_2 25 kGr sin 6 {895 6 +sindtany)d¢
R

siné -tanycos é

‘Note that a pole exists when tan é = tan y, which occurs when

(12)

(13)

(14)

dé¢/ds = 0. The only true pole for B(R) in the y, £ plane occurs when
tan 6 = tan y and tan £ = 0. However, this pole has a finite integral
and is tractable mathematically. The method of integration used is

described in Sec. 5. 0.

2.2 Antenna Gain

The gain of the antenna is considered in the computer
codes as a constant since the target sphere subtends a sufficiently small
angle at the transmitter. In other cases the consideration of the vari-

ation of antenna gain can be easily included.

2.3 Reflection Coefficient

The k in the equations for the modified potential is a

voltage reflection coefficient. For normal incidence on a smooth

dielectric material, the reflection coefficient is simply

k:il____jz_
¥y

-7-
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where n represents the usual impedance. However, for the problem
considered here oblique incidence occurs and both the angle of inci-
dence and the polarization angle must be considered. The reflection
coefficient for the parallel and the perpendicular components will be

‘termed kH and kV respectively. Employment of tke usual conditions

for the reflection of an EM wave at the boundary of a smooth homo-
geneous dielectric yields

kH = k1 cos2 (¢~ §)+k2 sin2 (¢-8) (16a)

kV= (k1 —k2)sin (¢-£) cos {$-£) (16b)

where ¢=0 has been arbitrarily selected as the azimuthal angle in the
direction of the pclarization. The k's in Eq. (16) are

cos{n,R) - le - pz2 sin2 (0, R)

cos (x_f,ﬁ)+p;\/l—p22 sin? (z—f, f-i) (17a)

k =

'\/;— p22 sin2 (o, R) -p, cos (n, R)
2" 2 2= -
_'\ﬁ— pz sin (n, R) --i=p1 cos{n, R)

k

(17b)

where

5. [f2 1 . NS
1 62 M 1 2 ' pu 2 62
The validity of the equations for reflection coefficient is certainly
open to question, since they are derived for a smooth homogeneous

dielectric, but the effect of possible error here is not thought to be
serious.
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3.0 STATISTICAL RELATIONSHIPS

The equation given for B(R) in the preceeding Section is, of
course, valid only for a specified path. That is, y, £, and r must be
specified for every point on the path to obtain a value for B(R).
However, some characteristics of B(R) can be described statistically.
The statistical relationships necessary for the descripticn of aver-
ages of the return signal are developed below.

3.1 Moments of B{R)

Of major interest is the ensemble average of B(R)
and the autocorrelation B(R)B{R+AR). Theze functions are, in part,
specified by the surface parameters. Since the relative deviation
of the radius r from the mean radius a is small, the mean radius
will be used instead of r. This leaves only v and & as variables,.

The simplest way to view the ensemble average is to
consider the integral of Eq. (1) as the limit of the sum

_a:

n
B(R) = ——1—2- lim z[kC cot v: 1As (18)

‘Since expectation is a linear operator, and G is independent of the

surface parameters,

B(R

Sena”

=L lim Z G. k.cot{n,, R) As. (19)
R2 11 1 1

n->oo i

The variables y and £ are assumed independent of each other at a
point; thus,

B k cot (fi, R) p(y) p(E) dydeds  (20)

o~

1
R) =3 SG
R ¢

NI"L’DMH
N'M l\?lt‘



obtains. The autocorrelation of B{R) can be obtained in a similar
fashion and

r r rr
2 2 9 73
B(R)B(R+A4R) = g § G.G § S ‘g gk cot(nr, ,R)
Rz R+AR) 172 1 1
( c, C 7 .7 _m o«
2 3 "3 T3

The joint probability density function in Eq. (21) is a function of the
particular values of s. and S, as well as of the range difference AR.
L

The matrix of correlation coefficients is derived later in this section.
In the above equations, v and £ were treated as the statistical vari-
ables. In the actual computations, the tangents of the angles are
employed. The tangents are used since they occur naturaily in the
equation for B(R} and have an infinite range.

3.2 Statistical Variables

The variables of interest are the tangents of the devi-
ation angles vy and &. The deviation of the radius of the perturbed
sphere frem the mean will not be included initially. The probabil lity
density functions of the tangents of the variables will be approxi-
mated by the weighted sum of a series of Gaussian functions each
having a zero mean, i.e., of the form

plx) = Z W N(0, 05 x); z LA (22)

This series was selected since it is symmetric, has an infinite range
(as does the tangent), has a mode of zero, and is a member of the
class of density functions that requires only linear correlation
coefficients to describe a multivariate distribution.

The correlation coefficients are a function of the displacement
(along a great-circle path) and the angular rotation on ¢. Consider

-10-




two poinis on an integration path. Thke deviation angles at these
points are Yy & and Yoo 52. Through these two points a great

circle is passed. Two new deviation angles a and b are defired
where a is the deviation in the plane of the great circle and b is the
deviation in a plane orthogonal tc the great circle. The angle be-
tween the slope of a, and £, is ¢/2. The relationship between the

slopes may be written

[

(tan a ) cos ¢/2 - sin ¢/2 \[tan £

tan b1 gin ¢/2 cos ¢/2/\tan Y,
and

tan £, cos ¢/2 - sin ¢/2) ‘tan 2,

tan B sin ¢/2 cos ¢/2 (tan b2

It is assumed that the correlation between tan a, and tan bj is zero

for any ij, that tan a, tan aq is equal to tan b, tan bz, and that the

correlation is only a function of distance along the great-circle path.
Using the above relationships and assumptions, the following matrix
of correlation coefficients was obtained.

51 £ " i
£ 1 p cos A 0 p sin (A9)
€ | pcos(ad) 1 -p sin (a9) 0
Y, 0 -p sin (A9) 1 p cos (a9)
Yo | psin(a9) 0 p cos (AP) 1

-11-




The coefficient p is more properly p{D) where D is the displacement
and is of the focrm

tan aL1 tan a2

02 {tan a)

p:

If the distribution of tan a (or the tangent of v or £} and the correlation
coefficient is known, the multivariate equivalent of Eq. {22) can be
written. Letting x indicate the array (tan g,, tan 52, tan 'yl, tan ’}'2),
the multivariate distributicn is -

~ a1
P(x) = Z 5 L T eXp _—1_2 (X M " x) (23)
2m? o |m|? 20,

where M represents the covariance matrix,
3.3 A Relationship of the Radius to the Slope

The approach described in this report is directed
toward determination of the probability density and spatial correlation
of the slope. However, it is pcssible tc describe partially the sur-
face elevation or radius from these quantities. If the mean radius is
a and the deviation frem the mean is x, thenr = a + x and x has a
mean of zero. In general, for two peints separated by a distance D
(along a great-circle path),

5 2
-x,) =20 [1-p (D] (24)

(xg - %y

If ¥ is the deviation angle of the normal in the great-circle plane, then

P2
Xy - X, = S tan Yds (25)
Py

-12-



The path of integration is the intersection of the great-circle plane
and the sphere. The variance of the height differential can be written

DD
2
(x2 - xl) .-g 5 tanw1 tan l[lz ds1 ds2
0 0

D D

2

_OW S‘ Sﬂpw(sz—sl)ds1 ds2
0 O

for p ” as a function of the displacement between two points.

transformation As = Sy = 8y gives

D s
2
(xz-xl)z_—. 2o¢ S‘S pw(As) dAs ds
6 0

Combining Eqs. (24) and (27) gives the relationship

D s

2 2

o [1-pX(D)].= ow S‘S‘ pw (As) dAs ds
00

(26)

The

(27)

(28)

Thus, if the standard deviation and correlation coefficient of the
slope are known, the same parameters can be determined for the
radius. In the limit, Eq.(28) is a form of Daniels’ relationship.

3
Daniels, F. B., "A Theory of Radar Reflection from the Moon
and Planets'', Journal of Geophysical Research, Vol. 66, No. 6,

p 1784.
-13-




2 20x2
c = lim [1-p (D)]
/] 2 X
D—0 D

If the angular correlation coefficient can be determined, the
variations in height can be described partially.

-14-
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4.0 THE RETURN SIGNAL

The relationships necessary to describe a radar return signal
were developed in the previous section. These relationships and the
general characteristics of an impulse response are employed below
to develop several functions of the return signal.

4.1 Description of the Return Signal

Given an impulse response h(t), the return signal g(t)
can be expressed as the convolution of h(t) with the transmitted sig-
nal f(t), as follows

ty

g(t) = S. ft -7r)h(r)d~ (30)

Y

if a pulse is transmitted and its duration T is less than a/c where
a is the radius of the planet and c is the velocity of light, the limits
of the integral are, defining t = 0 as the leading edge of the pulse:

a2
t t fort < t< t + T
0 o - o)
t-T t fort + T < t <t
e} - m
t-T t for t <t<t +7T
m m — m

where t is the transport time 2(d - a)/c to and from the nearest
point on"the reflecting surface, and trn is the maximum time

2V d2 - a2 | c. Integration of Eq. (30) by parts gives the result

1:2
_ A df(t - 7)
g(t) = - P S‘ _——d—'T__— B ('T) dr (31)
(47)
t
1
-15-~




B(7) may be expressed as a Taylor series expansion about T = t,

in the interval from tl to tz, as foliows:

0
B(T) = z ;1}— d Bm (T - 1)
o= T=1
Then
0 tZ
git) = - Z 1. . B(T) . 51 jdfgt T )P dr

(41r) oo 4 :

1

The first term, n = 0, of this series is

g ) = - B [ £t - t,) - &4t - t)]

(4m)

Trial of the various values of t, and t, snows that this term is always
zero. Using this fact and integrating by parts again in the reverse
order, one cbtains

00 t—t2
n-1 n
gty = —> Z (1) dBO g 0 x" Tax  (32)
2 n! n _
(4m) n=1 dTr T=1 t-tl

where x = t - 7. Furthermore, if it assumed that the transmitting
antenna gain, as a function of frequency, is zero at zero frequency,
i

then § f(x)dx = 0, and for the middle time interval, tO+T<t< tm’

the n = 1 term vanishes. Also, inthe middle time interval, the

-16-




integral in the nth term is independent of t and can be expressed as
Fn(T), or

- _ n-1
g = (UVTF (T)

where

0
F(T) = Sf(x)xn—l dx
T

for the middle time interval. This implies that all time dependence
of g(t) is due to the derivatives of B(r) evaluated at 7 = t, and for

a<<A, most ofthe energy in g(t) will be at frequencies muchlower than
w, provided there are no rapid fluctuations in B within a pulsewidth.

Another interesting expression for g(t) is obtained by consid-
ering f(t) to be the product of an envelope function and a sinusoidal

RF wave:
{

A(t)sinwt o<t<«T
fit) =
0 elsewhere
\
then
{
A(t - 7)sinw(t - 7) t-T<1< t
f(ig: o)
0 elsewhere
and
WA( - T)cosw(t - 7) +-d—A—gT—-1)— sinw(t - 7)
df(t - 7) -
d7

fort - T <7 <t, 0 elsewhere

-117-



dA(t -

This permits Eq. (31) to be written as

ty
g(t) = 5 cCosS WT S[wA(t-'r) cosz-Msian]B(f)df
dr
(47) :
i
t2
+ sinwT [wA(t -T) sinwr-t-g%‘i—nﬂ cosz] B(r)drT
t (33)

—t

The four integrals involved may be identified as the integrals for
evaluating the Fourier coefficients of the functions wA{t - 7)B(7) and
I ™) B(7), at the frequency w. If A changes only slightly in a
single cycle, then the coefficients will be small unless there are
fluctuations in B(T) in distances of the order of 2 wavelength. The
power-series expansion of B(7) may be inserted in Eq.{33)if desired.

The details of the computation of g({t) are obviously quite

dependent on the shape of the envelope function, A(t). Consider the
rectangular pulse with an integral number of cycles in it, so that

T
A(t) = A and S.f(t) = 0. Then, from Eq. (31)
0

ty
g(t) = g::‘ \gcos wi{t - 7) B(r)dT
t1

Using Eq. (32), the leading term for the first time interval is

cA dB(T)

167rm2 dr7 t-t

= - <t<t 4T ,
g,(t) cos Wt - t ), t <t<t 4T,

34)

-18-




and a similar expression for the last time interval. However, for

‘the middle interval gl(t) vanishes, and the leading term is

2
82(’” - cTA2 d B(;‘) (35)

167w d7r T-1

This is not only a higher-order term, but it has a weak time depend-
ence if B(7) does not fluctuate. If it had not been assumed that there
were an integral number of cycles in the pulse, there would have been

a term due to 4B » but it would still have had the "weak'' time depend-

dr
ence. Finally, application of Eq. (33) yields
t2 1:2
g(t) = —;i:— coswt 5 coswTB(T)dT + sinwT S‘sinw_:rB(t)d'r (36)
tl tl

and the Fourier coefficients of B{7) are the significant quantities.

It might seem that this expression would give terms at w even for the
middle interval, but because the limits of the integrals involve t

if the power series for B(t) is used, the time dependence of the
resultant expression is still "weak".

4.2 Measureg of the Return Signal

. The return signal from a planet will usually vary

-widely from pulse to pulse. Consequently, it is often characterized

by averages such as the mean power, the mean envelope, or the auto-
correlation function. The most obvious average g(t) is easily ob-
tained analytically by replacing B(r) in the equations of the previous
section by B (7). However, this measure contains both the RF modi-
lated wave and any low frequency components of the return signal.

An attempt has been made in the previous section to show that such
components can exist, and perhaps even dominate the R F component
in certain cases, especially for the middle time interval. A more
interesting measure of g(t) is the average of the w component,

which will be called g | {t). It has been shown, at least for the

~19-



rectangular pulse, that gw(t) arises from the w compcnent of B({t),
Bw(t), evaluated between the limits tl and tz. An envelope detector
attached to a resonant receiver actually measures the average over
an RF cycle of gw(.f), or"é:ar)‘, where the wiggly bar represents RF

averaging as distinguished from the straight bar for ensemble aver-
ages. That is, if a member of the ensemble of gw(t) is gwi (t) =

ANAA
Ei(t) cos (wT + ¥1i), the RF average is ig w i (t)’ = 2Ei(t) /7. if the

peak amplitude of the transmitted puise is A, the normalized aver-
age envelope resocnse is Ei(t) [A, which will be cailed E (t).

All the processes invclved in obtaining E (t) from g (t)
are linear operations except the taking of the absolute vaiue. It would
be desirable to be able to express E(t) in terms of B{7} (since B(7)
is in turn expressed in terms of the probability distribution of the
deviation angles without involving the autocorrelation function of the
deviation angleg. If E(t) can be adequately expressed in terms of
B{7) , then comparison of E {t) with experimental values can deter-
mine the Wi's and Gi's of Eq. (22). This is not possible in general

because of the absolute-value operation involved. The best that can
be done is to separate E (t) into two parts, one due solely to B(T),
and called Eo(t), and another called Er(t) that vanishes when the

random compcnent of B({T) vanishes. Eo(t) wiil be investigated to

see whether there are important cases where it is the deminant part
of the envelope function. This will be accomplished by studying the
g (t) generated by B{T).

B (T) and its derivatives are smoothly varying functions
between to and tm' It and its second derivative are positive, and its

first derivative is negative. If ) <<c T <<a then B{7) changes very
little in one RF cycle. This makes expressions such as Eq. (7) very
difficult to evaluate numerically. On the other hand, the relatively
slow variation of m with T makes the Taylor series expansion
converge rapidly. In fact, for the numerical examples corresponding
to lunar experiments, to be discussed in a later section, the series
was well represented by its leading term. Therefore Eqgs. (34) and
(35) were used to evaluate g(t) inthe outside and middle time intervals,
respectively. For the outside time intervals the equation is already

-20-




in the form necessary for evaluating chitf‘g since it i3 the product of

a slowly varying time funciion and 2 cos w{t - to) factcr,
Thus
| iz
E (t: = - Bd\ﬁ | (37)
IBrw ! l T =1

for the outside time intervzis. For the inside time interval, the only
component received wiil te the Fourier component cf the second
derivative of B(7r) at w ¢»r within the bandwidth cf the receiver.
Numerical analysis shows that this is not the majcr component of the
experimentally cbhserved signsl. Therefcre, in this time interval, it
is not justified to neglect Er(t). In the first time interval the numer-

ical value of EO(t) is the same order of magnitude as the observed
signal, so Eq. (37) may be usefu!, at least for scme lunar problems.
There is no practical analytical method known to the

authors for evaluating the random compcnent of B{7) directly, and
hence obtaining E Y(t}ﬁ. For cases where this is important, it will be

necessary tc use scme other measure of the return signal for com-
parigon with experiment. The next pocssibiiity to be considered is
7UUU™

2 o 4 .
8, {t}. It has the advantage cf nct requiring the absolute magnitude

signs that occur in defining the enve.cpe functicn. Its disadvantage is
that an assumption of the correlation function of the deviation angles
is required. For the unit amplitude rectanguliar pulse, one obtains

[\

(3]
—

gz(t)) cosw({t =7)B(7) dT

d




which can be expressed as

. tz t2—7
gz(t) = —%{—) g cosw(t - T)cosw(t-T7-u)
t1 tl-'r
B(T+0B(r)dudT | (38)

The limits t1 and ‘c2 are defined as before. In this case the W com-

ponent at the antenna appears as a 2w component after squaring. By
using a bivariate Taylor expansion of B (7+u) B(7) and selecting the

2 .
2w component, one obtains g, The leading terms of the expansion
are

d[ B(7 + u) B(1)]
du

Br+WB( = B (t)+u

diB{T+uB(71)]

+H71-t) e

(39)
u= 0
T=1

The B2(t) term vanishes when gz(t) is computed, and the term due to
the derivative with respect to 7 behaves in essentially the same way

as the derivative of B(7) term did in computing € (t), vanishing in

the middle time interval. The term due to the derivative with respect
to u is the term that corresponds to the random component of g (t).

If this derivative with respect to u is large enough to cause an appreci-
able change in B (7+ u)B(T) for u's corresponding to times on the order

of one RF cycle, then this term will cause the major component of

2 .
g, (t), at least for the middle time interval.

The last measure of g(t) to be considered is the auto-
correlation of g (t), g (t) g (t + 0). This functions allows the




consideration of the autocorrelation of B(7) over ranges greater than

T. However, the discussion of gz(t) indicates that the important
autocorrelations of B (7) for creating components of g(t)at w are
those with separation distances of at mest a few R F cycles. This
time interval is too short to be resolvable in the experimental data,
so little new information is to be expected from g(t) g(t + 0). For
these reasons the discussicn will;bé confined to setting down the

defining relations. Because calculation of gz(t) involves doing most
of the necessary work for calculating g(t) g(t + o), the machine code
was designed to calculate the more general measure. The auto-
correlation function may be written as

§

pes
[\

2

ty
g(t)g(t + o) =(%) g cosw(t - v)cos w(t+ o - u)
!
t
1

o+
=

BWV)Br)dudv (40)

The major difference from the expression for gz(t) is in the limits
integration. These are now given by the table on the following page.
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5.0 COMPUTING APPROACH

The theory of the preceeding sections has been used in the
preparation of two computer programs or codes. The first code was
designed to investigate the envelope function from B(7T). The second

calculates g (t) and g(t)g{t + 9) from B{(T)B(T + u). The first code
has been checked cut and compared briefly with experiment, but time
did not permit this for the second code. Listings of the two codes
appear in Appendix II.

5.1 Thke Envelove Code

A Monte Carlo approach was selected to evaluate the
integral expressions for the measures ¢f B(R) {in the case of this
code B(R) as expressed by Ea. (20};, This selection was made since
the problem is essentially a statisticazl one. In addition, there are
three other reascns for this choice. The first is that n-dimensional
integrals can often be svaluated in fewer steps if points are selected
for evaluaticn of the integrand randomiy throughout the n-dimensional
space, and the integral is evaluated as the average value of the
integrand times the area of the surface or hypersurface of integration.

The other two reasons for choosing the Monte Carlo
approach relate to the singularity of the integrand. When B(R) was
expressed in the form of an integral over ¢ between 0 and 27 in
Eq. (14} a singularity occurred whenever tan 6 = tan v. Tests
showed that in this fcrm the integral diverges. For this reascn, the
integrals in Sec. 3 were used in the form of integrals over s. In
this form there is still a singularity when the normal n is directed
along R but this only occurs for the double condition, tan é = tan vy
and tan § = 0, and the integral converges. However, in this form
the limits of integration are not known, since the length of the contour
is not known in advance. It was found that by taking a random walk
around the contour, the contour length could be evaluated at the same
time contributions from various parts of the contour to the integral
were being evaluated.

The last reasaon for using a Monte Carlo method is
that the integrand still had a singularity even in the form in which it
converged. To accurately and efficiently evaluate an integral with a
singular integrand, many more mesh points or samples are needed
in the vicinity of the singularity. Inthe Monte Carlo method this can
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be accomplished by biasing the probability distribution from which the
variables are picked. The contribution to the integrand by this factor
is then removed before accumulation. This corresponds to a nonuni-
form and variable mesh spacing in ordinary methods of numerical
integration which is difficult to formulate for multiple integration.

Equation (20) may be rewritten as

2 ) o0 o0
R dIBR) _ S g k cot (7, B)H%an v)P(tan £)d (tany)d(tan &) -
“o0 =00

G ds

To execute the biasing operation, the variables of integration are
changed to

P(tanvy)

aQ = d (tany)
¥ Vtany - tané
dQ, =242n%) 4 (tang

£ V tan &

The Q's are actually biased cumulative distributions. The lower
limits of integration become zero, and the upper limits become

o0
D = Sﬂ P (tany) d (tanvy)

-0 Vtany ~tané

0

-0 Vtan§
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The reciprocal square roct cf the distance from the singularity is
chosen as the bias factor tc approximeately compensate for the strength
of the singularity. Thus one cbtains

D
9 Y
R d[B(R)] S
0

G k cot (n, R)\/'tan y-tané Vtan £d QY ng

© U

If Q and QE are chosen independertly from uniform distributions N

_t;mes, and the integrel is approximated by the average value of the

integrand times the prcduct of the ranges, one cbtains

N
. D -
R d [B(R)] = \“1'\1 § Z/ki cot (niR):'\/tan 'yi - tan 6 Ytan ’s"i

i=1

where N is still arbitrary. If a As is selected and for each selection

d¢

of Q and Qg , a cerrespording A4$is calculated assuming A¢=ES—AS,
then 1f ¢ is started at 0 and accumulated, the series of selections
may be terminzated at ¢ = 27. The estimate of the length of the
contbur is then S(R) = NAs, and
— d[B(R)
B(R) = NAs E_B_]
ds
As D, DEG N
= é Z k cot(n R)Vtan Y. -~ tan GVtan E. @)
R
i=1

If this process is repeated Nc times to improve the estimate of B(R),

then the best estimate cf B(R) is the average of the individual esti-
mates. If the desired estimate of B(R) is to be the average value
-27-




over a range of R such as the puisswidth, then R may be chosen
from a uniform distribution on its range fcr each of the NC estimates.
Thus

N
GD ¢ D .as,

N
B{R) : —-ﬂ—;—l- k..cot(; .,-ﬁ.)\/tan'y..—ta.n 6.'Vrta.n E..
S R ij H i j ij

_j: i J i=1
G_D'g NNC D iAsiki R
= Z i cot(n,, R,ﬂ/tan v, -tan &‘\/?8.1’1 £, @2
N R2 i T i 1 i
€ =1 i

D’Y and A s have been included in the summation since DY is dependent

ontan 8 whichis inturndependent on R, and the most efficient choice
of A s is, in general, dependent cntan 6. If As is to be chosen so
that there are at least Nmin steps around the contour, then

_ 27 asin®

N_ .
min

However, it was found that when the maximum o of the probability
distribution was larger than tan 4, an inefficiently large number of
steps were required to get arcund a contour. Therefore, for
2N2o0 > tan &, As was replaced by 2V2g__ As/tané.

max : max

The variance of the estimate of B(R) is given by

NC
2 2
21 , - (5m)
“BR * 7D Z((—'—)B(R i NC(B(R): (43)
C le
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2 2
where(B(R))’.) is the square of Eg. (41), and (B{R)} is the square of

J
-Eq. (42). Each of the above equations is actually to be considered as

two equations, one for evaluating the depclarized component of B(R),
BV(R), using kv for k from Eq. {i6b), and the cther for determining

the undepolarized component of B(R), B. (R), using Eq. (16z). The

H

- - d
evaluation of cot(n, R), and of i {for determining A¢) proceed from

Eqgs. (13) and {12) respectively.

The plan of the calculations to this peint is then to
evaluate Q versus tan € from Eg. (22} with Wi ard Gi as input data.

The range R is then chesern, and the trigometric functions of 6 and
8 are computed starting from the law of cosines, The angie ¢ is set
ig evaluated versus tan 6. Then

equal to 0, As is evaluated, and QY is

tan y and tan § are chosen by chcosing QY and QE from a uniform

distribution. This allows evaluaticn of one term of Eq. (41), and the
evaluation of a A¢. ¢ is incremerted and a new selection of tan y
and tan £ is made. This process is continued until ¢ reaches 2,
accumulating the contributions to W A term of Eq, (43) is calcu-
lated and a2 new R is calculated; thiz process is iterated Nc times,

continuing the accumulation of B(R}, and UZ(B(R))).

After evaluation of B(R) and crz (B{R)) for each of
several pulse pcsitions, g {t) and its variance are calculated using
Eqgs. (35) and (36). The dglﬂi*vati'ves are estimated from the finite
difference approximation over the interval between the pulse positions.
It is realized that g (t) is not necessarily a good approximation to
the total signal received at frequerncy w at all times. The main pur-
pose of the calculation is to see whether useful comparisons with
experiment can be made without inciuding the random component
of B(R).

An additional output is available from this code,
namely the estimate of the contour length S(R) at each R used. As
will be explained below, having this contour length simpiifies the
evaluation of B{(R)B(R+ AR) in the other ccde.

5.2 The Correlation Code

The calculation of B(R)B{R+AR) prcceeds from Eq. (21)
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rewritten as

¢ =27 ¢

g — 8
§ 8
8§ 8

1 o0

1
B(R)B(R+AR) = 5 .2 S‘ Gle g
(R+AR) ¢1= 2 -0

k. k. cot (nl,ﬁ)cot(x?z,R+AR) P(tany,, tany

1Ky tangl,tansz)d(tan 'Yl)

2:

tap &}
d(tan Yz) d(tan %’1) d(tan 82; ds1 ds2

The transformation of variables used is analogous to that for B(R),
and is given by

P(tanyl)
dQ. = d{tan v,)
A5 '\/tanyl - tané,

P (tan 72)
dQ = d (tan ’}'2)
2 WNtan Y,-tan &, '

P (tan 51)
dQE 5 —_— d (tan El)
1 ~Ntan El '

P (tan §2)
dQ; = ——— d (tan £,)
2 tan 9

The upper limits, D'YI’ D72' D§1’ and Dgz are again the integral of

the corresponding d Q's from -oo to+ewa These transformations are
specified on the basis of the univariate distributions because it is dif-

ficult to choose variables from a multivariate distiribution on the basis
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of a group of random numbers. If the length of the contours has been
determined using the envelope code, the limits on the s integrations
may be approximated by the appropriate §'s. Thus the resulting
expression is

S{R) S(R+AR)

G.G 52 1 Y2
BR)B(R+AR) = S g -1z 5 § S Sk k
0 0 0

0 0 R (R+AR)

—

- P(tan yl,tan yz,tan ’g'l,tan 52)
cot(nl, R)cot(nz, R+AR) ‘

P(tan \/l))P(tanyz)P(tangl)P(tanTs'z_)

thanyl-tanél)(tanyz-tan 62) \ftanEltan §'2 deldedeEIdQ‘é’st ) d52

The Monte Carlo estimate of this, for N selections in the six dimen-
sional space, where ¢1 and ¢ are chosen from uniform distribu-
tions for 0 to 2w, is

N
BR)B(RFAR) = Z
i=1

G.G,D..D D D S(R)S(R-i-AR) - =
1727¢1 's'2 k| k, cot(n )
R (R-I-AR)

- s P(tan\(l,tany2 tan&' tanE)
+
COt(‘nZ R+AR) P(tanyI) P(tanyz) P(tanE )P(tan's' )

(‘can\.(1 - tan 61) (tan YZ - tan 62) tan El tan 52

where an i subscript has been left off all the variables. The variance
of B(R)B(R+4R) is calculated from a formula analogous to the one for

o2 (B(R)). This time the equations represent four equations for the

four possible combinations of kl and kz, namely kH1 k.H2 s

kHl sz le kHZ’ and le kVZ' The code is presently arranged

to calculate g(t) g(t + At) from Eq. (40), but this will probably have

to be changed because of the high degree of cancellation involved in

the 1ntegrand The Taylor expansion of Eq. (39) would be used.
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6.0 RESULTS AND CONCLUSIONS
6.1 Numerical Results

The tests of the envelope cede were executed to cor-
respond to a lunar experiment conducted with the 68~cm Millstone
Hill Radar, as reported by Evans and Pettengill. © A 30-microsecond
pulse was employed, and the antenna gain was considered to be 37 db
for all points on the lunar surface. Runs were made for ass%med
standard deviations of the slopes of 0. 05 (2.9°) and 0.10 (5.7 ). The
answers obtained will be discussed separately for the first time
interval, when the signal is at least in part due to the pulse passing
over the nearest point on the surface, and for the middle time inter-
val, when the signal is due to a pulse whose leading and trailing edges
are both in contact with the surface. The signal in the final time
interval was too small to be experimentally observable. Also,
"'shadow effects" have been ignored in the analytical procedure and
in the code, and these will be impcrtant on the limbs of the sphere,
which are being examined at late times,

Although the shape of the signal was calculated during
the first time period, the answer includes the assumption of a square
transmitted pulse, and is quite dependent on that assumption. Data
on the shape of the transmitted pulse and of the received signal during
this time period was not contained in Ref, 3. Alsc the analysis of
the shape of this part of the signal would ke complicated by need to
consider the receiver freguency response, Therefore, comparisons
with experiment in this time interval were limited to consideration of
loop loss (PT/PR). At the time the trailing edge of the transmitted

pﬁlse was incident on the moon, the experimental and computed
results were as follows:

Experimental 210 db
Computer (o= 0. 05) 213 db
Computer (c = 0,10) 227 db

~The experimental loss was obtained from Fig. 9 of Ref. 3 and is for

a 12-microsecond pulse, but the analysis indicates the result should
be relatively independent of pulse length.

4.Evans, J. V., and Pettengill, G. H. ""The Scattering Behavior of the
Moon at Wavelengths of 3.6, 68, and 784 Centimeters', Journal of
Geophysical Research, Vol. 68, No. 2, January 15, 1963.
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Because the analysis only includes the part of the sig-
nal due to B(R} and not due to the random component, it is not
possible to conclude at this point that the surface appears to have a
standard deviation of about 0. 05. It is only possible to say that during
this time interval, the part of the signal due to B(R) is a substantial
part of the total signal. At least for this part of the signal, the loop
loss is quite a sensitive indicator of the surface roughness. Appli-
cation of the correlation code will demonstrate whether this is the
only significant part of the signal during this time period.

For the middle time interval, it was found that the
part of the signal due to B(R) was much smaller-than that cbserved
experimentally, and thus that the dominant part of the signal is due
to the random component of B (R). This can perhaps he best illus-
trated by comparing with experiment the answers obtained assuming
an infinite-bandwidth transmitter and receiver. For this case the

T |
condition that S f(t) dt= 0 is abandoned, and Eq. (34)is used for this
0

time interval also. Note that this makes the signal directly pro-
portional to h(t). Normalizing these signals to the signal used to
compute the loop gain, above, gives the results shown in Fig. 3.
The computed polarized signals gH(t) and the computed depolarized

signals (t) are shown for both surface o's, along with a curve
g gV g

derived from Fig. 6 of Ref. 3. It is seen that even under these
extreme assumptions the computed signals are appreciably too low.
When Eq. (35) was used the answers were two orders of magnitude
lower, and even in this case only a small fraction of the signals
would actually be observed through a narrow-band receiver. Evi-
dently the correlation code will be réquired to obtain useful infor-
mation in this time interval.

The estimates of the standard deviation of the results
for the polarized signal were about 10-20%. The standard deviations
for the depolarized signal ranged from a nominal 10% at 0. 05 milli-
seconds to over 300 percent at 8 milliseconds. These calculations
required 12 minutes of IBM 7040 computer time for all the calculations
associated with one surface probability distribution.
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6.2 Conclusions and Recommendations for Future Work

The envelope code, in itself, is not an adequate tool for
interpreting lunar radar return, but will be useful in conjunction with
the correlation code. The correlation code should be modified to use
a more sophisticated method of evaluating the return signal. Some
additional analytical work may be necessary in this connection. How-
ever, the envelope code results indicate that a reasonably efficient
method for evaluating measures of B(R) has been found. This is the
main part of the correlation code, and it should not require anything
but normal debugging. Future work should concentrate on using this
code to evaluate the power versus time in the return signal. After
satisfactory results are obtained for the power-time relationships,
the autocorrelation function of the return signal can be explored.

It is recommended that initial efforts involve the lunar
radar data. Once the lunar data has been interpreted, hypotheses
concerning the Earth and other planets in our solar system may be
examined. Finally, the program may be extended to include doppler
effects to aid in the understanding of some additional problems.
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APPENDIX I

Basore's Theory of
The Impulse Response of a Reflecting Surface

The usual retarded vector potential version of Huygens Principle,
after a two-fold application of Green's Theorem, can be expressed” as

2
a -k (1 L Al (21}
47 r 2 atz
A% ¢ t-r/c

+ M ] Cos(n’ r) + (_8_1% da

‘ t-r/c g an)t°r/0

Ll
47 r
S

Each component of the vector potential obeys such a relationship. For
the present application, the closed surface S will be the expanding wave

resulting from an impulse transmitted att - r/c - r1/c where r_ is the

radius of the expanding shell. The potential will be computed at the origin
of the impulse, so that at time t the volume within S is source free. The
A (t) due to the reflection is designated A2, and the potential due to the

emitted impulse at radius r from the origin is designated as Al' Under

these conditions, Az(t) is just the retarded version of Al(t) and

3
am=L O/ A +2 3] costnr) (I-2)
2 47 o 1T r 1 ¢ 1
S
aAl
+a—£1— cos (n,rl) da

However, r is in the direction of the normal and cos{(n, r)=1 and

1 ¢.f. Slater and Frank ”Electromagne:‘%iGsm',' p. 170.




da (I-3)

R
R
>
+
O |
>

+
>

1
A0 =4, .J(.
S

If Al is in a homogeneous medium so that it can be described at every

point by Ao(t-r/c) then no reflection occurs and Eq. (3) gives A(t)=0.

r
In the case of concern, a boundary intersects the spherical shell and

A1 is dependent upon the boundary conditions.

Now if A1 is any function of r, but not of ¢ or 6, then for A1

aligned with the z axis, Ar=A cos 6, A = —A1 sin 0, Ad’ =0, and the

1 6
r and 6 components of curl A1 are identically zero. Then

1{ 9 8A1 9
curlA1 s [W (—rA1 sin 6) - 55 COS 9] - AB
Before the boundary is encountered the incident field is Hl(t) = air AB
which for A, =a {t=r/c)
1 0 r
1 1
Hl(t)——; AG-E AO (I-4)
At the boundary the actual field is
H (1) = = A (1-5)
2 or 0
The 6 component of A2 is from Eq. (I-3)
1 (1)1 1 s 9
Agpt _4—1r,S‘r v fe v o Bgtar Bgf B
S (1-6)




Substitution of Eqs. (I-4) and (I-5) into (I-6) gives

1
oy S [- Hl(t) +H2(t)} .« da
S

1 3 -
’T.YT (1-7)
S

Assuming it is possible to interpret H3 as the incident wave H times a
o

reflection coefficient k, then

A(t) _Eg - H0 (t-r/c) da (1-8)

The magnitude of H 0 will depend upon the angle of incidence and the
transmitted power. In terms of the usual radar symbols and a trans-

mitted impulse function P(t) = Pogz(t)

GP
0 R 47N

cos (n, R) g(t-R/c) (1-9)

Of the terms in Eq. (9), only G will vary as a function of position.
Substitution of Eq. (I-9) into (I-8) yields, back at the transmitter,

Alt) = kVG cos (n, R)g(t-—) da (I-10)

41rn

and the surface S is the surface of intersection of the impulse and the
boundary. If the duration of the impulse is Au seconds, it will have a
duration of ¢Au in distance units. Since the vector R and the normal n
are not, in general;parallel, the area increment is
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_ ARds

" sin(n, R) {-11)

where AR = cAu. When this is included, the expression for the magnitude
of the vector potential becomes

P
Al(t) = 1 3 -/ 4"27 g kVG g(t-2R/c) cot(n, R) ARds (1-12)
47R “ S

When g(t) is treated as an impulse, integration with respect to R yields
the result

4 1rR2

P .
1 c 0 S
= =) L -
A(t) (2,-\/ ypar kVG cot (n, R)ds (1-13)
C

The c¢/2 multiplier arises from the conversion of a delta function in time
to a delta function in range. The magnetic field can be obtained by
treating A{t) as a function of R and computing the curl. The curl of a
vector A aligned with the z axis is numerically equal to 5?; Ae, and is
aligned in the ¢ direction. This implicitly states that each repeated
wavelet arrives back at the transmitting antenna polarized perpendicular
to the direction to the point at which it is reflected. The net effect of the
simultaneous arrival from different points on the curve C can be included
by introducing the cross section of a receiving antenna G)t2/4'7r. The
equivalent vector potential is

(47R)

X P,
arm) =2 20 g kG cot (n, R)ds (I-14)
c

and the equivalent field is

D A c PO
H'(R) = -8—.].:? 3 -2- T kG cot (n, R)dS (1-15)
{47R)
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The relative response is then

= ._7L !
h(t) PO H'(R)

_ct
R=3
or

A c 9 1 ‘
5 3 a—-R — S kG cot (n, R) ds ot
(47) R” ¢ R=%

h(t) =

(I-16)

Finally, to obtain the result in the form that will be used, the partial
derivative with respect to R is converted to one with respect to t, and

hit) = A 9 1

-— —_— ykG cot (n, R)ds ¢ (I-17)
(4‘1r)2 ot R2 R

Using Eq. (I-17) one can, for example, easily obtain the standard radar
cross section of a conducting sphere and a conducting flat plate.
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APPENDIX II

CODES

(a) The Envelope Code

YIGWNN WOANYY IHL 40 3INTIVA LNIHUNI=ONNY

ATINO 379V IYVA 9NILd1¥2S9nS=|

(LNdN1)
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IN3SIY¥d SIVIYILYW FHL 40 D11SI1Y¥ILIVEVHD Y¥ILIWVEVL INdNI=]15d3
(ZNW)INISIYd STIVIYILIYW IHL 40 D 1LSIHILIVYHYHI HILIWVHYL LNdN1=ZNWD
(LNW)LINISI¥d STIVIYILYW FHL 40 I 1LSIYILIVYVHD ¥ILIWVHVL LNdNI=1NWD
g

40 3INTVA IVINIWIYON| JHL 31VTINDTIVI 0L @3sN INVLISNOD Qa3aLviNgivo=Md
403 (VWWYD)INVL 3FHL ¥0d4 HOLOV4 HNIZIIVYWYON=ZQ

402 (IX)NVL 3HL ¥04 ¥01ovd 9ONIZITYWHON=1Q

(AINO 3NILNO¥MENS 3IHL

40 GN3 3HL 1v) 379v1 40D (VWWY9D)INVL 3IHL NI SIIYINI 40 HIGWNN=NN
XQ 40 3INTYA 3IHL ONINIWY3ILIA NI @3Isn INVLISNOD=V113Q
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